The Sweet Science of Candymaking - American Chemical Society (2024)

By Tom Husband October 2014

Rock candy

To make most types of candies, you always start by dissolving sugar in boiling water. This forms a sugar syrup, which you can cool down by taking it off the burner. But how you cool down the syrup can make all the difference.

For instance, if you want to make rock candy, you need to let the syrup slowly cool down over many days until big sugar crystals form. But if you want to produce fudge, you need to continuously stir the syrup after an initial cooling period, so when the sugar crystals form, they stay small and do not grow too much. If you want to make cotton candy and glass candy, you need to cool the syrup quickly to keep crystals from forming.

The main difference between these different types of candies is whether sugar crystals form and, if so, what their size is. So how do sugar crystals form, and what causes them to have different sizes when the syrup is cooled down?

Let’s assume we can see sugar at the molecular level. Each grain of sugar consists of a small crystal made of an orderly arrangement of molecules called sucrose. Sucrose is an example of a carbohydrate. The basic unit of a carbohydrate is a monosaccharide or simple sugar—such as glucose or fructose (Fig. 1). These simple sugars can be linked together in infinite ways. Sucrose is a disaccharide made up of glucose and fructose (Fig. 1 and Fig. 2).

In a sugar crystal, the sucrose molecules are arranged in a repeating pattern that extends in all three dimensions, and all of these molecules are attracted to each other by intermolecular forces—a type of interaction that binds molecules together and is weaker than the bonds between atoms in a molecule.

When you add granulated sugar to water, some of the sucrose molecules start separating from one another because they are attracted to the water molecules (Fig. 3). When water and sucrose molecules are close to each other, they interact through intermolecular forces that are similar to the intermolecular forces between sucrose molecules.

The dissolving process involves two steps: First, the water molecules bind to the sucrose molecules; and second, the water molecules pull the sucrose molecules away from the crystal and into the solution.

In general, only a certain amount of a solid can be dissolved in water at a given volume and temperature. If we add more than that amount, no more of that solid will dissolve. At this stage, we say that the solution is saturated. The additional solid just falls to the bottom of the container.

Why is that so? If you were able to see the molecules of sucrose and water, you would notice that, in the beginning, when you add a small amount of granulated sugar to the water, most of the sucrose molecules are leaving the sugar crystals, pulled away by the water molecules. You would also notice that some of the dissolved sucrose molecules are also crystallizing, that is, not only are sucrose molecules leaving the sugar crystals but other sucrose molecules are rejoining the sugar crystals, as well (Fig. 4). The reason is that sucrose molecules are constantly moving in the solution, so nothing prevents some of them from binding again to sucrose molecules in the sugar crystals. However, the rate of dissolving is greater than the rate of crystallization—at least until the solution is saturated—so, overall, the sugar crystals remain dissolved in the water.

As we add more granulated sugar to the solution, the rate of dissolving decreases and the rate of crystallization increases, so at some point, both rates are equal. In other words, the number of sucrose molecules leaving the crystals is the same as the number of sucrose molecules joining the crystals. This is what happens when the solution is saturated.

As a result, past that point, if we add more sugar crystals, the process of dissolving will continue, but it will be exactly balanced by the process of recrystallization. So the sugar crystals cannot dissolve in the water anymore. In this case, the crystals and the solution are in dynamic equilibrium. This means that the size of the crystals stays the same, even though the sucrose molecules are constantly trading places between the solution and the crystals.

To make rock candy, we initially used more sugar than could dissolve in water at room temperature (three cups of sugar for one cup of water). The only way to get all of that sugar to dissolve is to heat up the water, because increasing the temperature causes more sugar to dissolve in water. In other words, the dynamic equilibrium is affected by a change in temperature. If we increase the temperature, we increase the dissolving process, and if we reduce the temperature, we decrease the dissolving process.

The crystallization process is explained by Le Châtelier’s principle, which states that a system that is shifted away from equilibrium acts to restore equilibrium by reacting in opposition to the shift. So an increase in temperature causes the system to decrease energy, in an attempt to bring the temperature down. Because the breakup of chemical bonds always absorbs energy, it cools the system down, so more sucrose molecules break apart and dissolve in the solution.

What happens when the solution cools down? At this point, we see sugar crystals form. This is also explained by Le Châtelier’s principle: A decrease in temperature causes a system to generate energy, in an attempt to bring the temperature up. Because the formation of chemical bonds always releases energy, more sucrose molecules will join the crystal in an attempt to increase the temperature. This explains why crystals form when the temperature decreases.

Once the saturated solution starts to cool down, it becomes supersaturated. A supersaturated solution is unstable—it contains more solute (in this case, sugar) than can stay in solution—so as the temperature decreases, the sugar comes out of the solution, forming crystals. The lower the temperature, the more molecules join the sugar crystals, and that is how rock candy is created.

Small crystals of fudge

Rock candy is made of large crystals of sugar, but other candies, such as fudge, contain smaller crystals of sugar.

Question: As the sugar syrup cools down, what can we do to ensure that only small crystals form?

Answer: Stir the syrup with a spoon or a spatula. Stirring prevents the sugar crystals that start to form from growing too big. In general, a crystal grows from a “crystal seed,” which is a clump of sucrose molecules, a speck of dust, or a gas bubble. Stirring causes the sucrose molecules to be pushed into one another, forming crystal seeds throughout the syrup. The resulting crystals will be smaller when more of the crystal seeds are present, because the sucrose molecules can join any of a larger number of crystal seeds.

If you want to make fudge, first heat the syrup to a temperature above the boiling point of water (100 oC), and then pour it into a pan to make the syrup cool down faster. The reason the syrup needs to cool quickly is that sucrose molecules do not have time to form enough intermolecular interactions to grow into large crystals. Some of them will form crystal seeds, but most of the sucrose molecules won’t interact with one another. By contrast, if the syrup were to cool slowly, the sucrose molecules would have time to arrange themselves in larger crystals.

After the syrup cools down to 50 oC, you can start stirring or scraping it. It is important to let the fudge cool down to 50 oC because if you stir during this cooling phase, crystal seeds will probably form too soon and, as a result, they may crystallize out of the solution, and the texture of the fudge would be grainy. The syrup actually becomes supersaturated, similar to what happened to the syrup used to make rock candy—the syrup contains more sucrose molecules than can stay dissolved.

As you stir the fudge, many crystals form at once, and the stirring helps the sucrose molecules bind to one another and start forming small crystals. The main goal is to keep stirring continuously, which generates a larger number of small crystals. As the temperature decreases further, the sucrose molecules spread among the many crystal seeds and bind to any one of them, keeping the size of the crystals small. This creates the rich, melt-in-the mouth texture typical of fudge.

No crystals at all

Some candies have no crystals at all. Examples of such candies include glass candy, gummies, and cotton candy.

Glass candy is so-named because of its noncrystalline structure. Usually, when people use the word “glass,” they mean the transparent material used to make windows. But glass has a more general meaning: It is a solid with an amorphous structure, which is an irregular structure, with no pattern. By contrast, a crystal is a solid with a highly ordered structure. For example, Fig. 5 shows the differences between the crystal and glass structures of silicon dioxide (a molecule than has a simpler structure than sucrose and is easier to represent).

To make glass candy, you cool the sugar syrup so rapidly that no crystals have time to form. The dissolved sucrose molecules start binding with each other, but in no particular order. When this happens, the candy is amorphous, and it is an example of a glass.

Gummies and marshmallows are produced similarly. In the case of gummies, gelatin is added to the sugar syrup to give it a rubbery consistency. Marshmallows also contain gelatin, but air is whipped into the mixture to expand it into a foam—a mixture composed of gas bubbles dispersed in a liquid.

Cotton candy is produced a little differently because the process does not start with sugar syrup. First, granulated sugar is heated in a cotton candy machine until it melts and the intermolecular forces between the sucrose molecules are broken. Having liquefied the sugar, the cotton candy machine then sprays the liquid through tiny nozzles so that it forms fine filaments of liquid that solidify immediately.

This quick cooling of the liquid into open air does not allow the sucrose molecules to form crystals, and threads of glass are created instead. These glass threads are so fine that they melt in your mouth, which is the wonderful experience of eating cotton candy.

One syrup, many candies

Most candies are made from syrup yet their texture can vary substantially. Two factors play a key role: the length of time for crystals to grow, and the way the syrup is handled while it cools down.

In the case of rock candy, the syrup is left for several days, which provides plenty of time for the formation of large crystals. In the case of fudge, because the syrup is stirred continuously, a large number of small crystals is formed. When making glass candy, gummies, or marshmallows, the syrup is cooled down so quickly that no crystals can form at all.

Making candies is actually chemistry in action. You manipulate the size of sugar crystals—even if you cannot see them—to produce an array of textures. This skill has been developed over hundreds of years, before the science of candy-making was understood. But even then, this art form tells us something interesting about chemistry: It is not only the combination of ingredients that defines a product but also the way they are mixed together.

Selected references

McGee, H. McGee on Food and Cooking: An Encyclopedia of Kitchen Science, History, and Culture. Hodder and Stoughton: London, 2004: https://www.hodder.co.uk/books/detail.page?isbn=9780340831496 [accessed July 2014].


Make Rock Candy. Michigan Department of Natural Resources, Sept 10, 2010:

http://www.michigan.gov/dnr/0,1607,7-153-54463_19268_20778-52395--,00.html [accessed July 2014].

Tom Husband is a science writer and chemistry teacher in London, United Kingdom. His latest ChemMatters article, “Two Is Better than One,” appeared in the December 2012 issue.

The Sweet Science of Candymaking - American Chemical Society (2024)

FAQs

What is the sweet science of candy-making summary? ›

At the heart of candy-making is sugar. The type, quantity, and crystalline structure of sugar used significantly impact a candy's taste and texture. Candy-making is a temperature-sensitive process. The way sugar is heated and cooled can result in a variety of sweets, from hard candies to gooey caramels.

What is the science behind candy-making? ›

Heating up the solution forces the sucrose molecules to break up and caramelize. But when we do that, the sugar molecules really want to crystallize back into their solid form. Candy-makers use that crystallization process, and some strategic interference, to create the candies that we know and love.

What is the chemical reaction in candy? ›

Because of the sucrose molecule structure we can make all kinds of candy just using sugar and a liquid, and sometimes a bit of fat. When you heat the sucrose molecule to the right temperature it breaks apart and forms caramel. This process is called caramelization.

What was the purpose of candy? ›

Before the Industrial Revolution, candy was often considered a form of medicine, either used to calm the digestive system or cool a sore throat. In the Middle Ages candy appeared on the tables of only the most wealthy at first. At that time, it began as a combination of spices and sugar used as an aid to digestion.

Is rock candy a physical or chemical change? ›

Crystallization is a physical change by which one substance in a mixture separates itself from the mixture and forms solid, crystalline particles with other molecules of the same substance. If you've ever seen rock candy, or made it at home, you have seen the result of sugar crystallization.

What is a good hypothesis for the rock candy experiment? ›

The hypothesis is that if sugar water is left to evaporate, sugar crystals will form on a string or stick, creating a rock candy treat.

What is the solution in rock candy? ›

Sweets like Rock Candy are made through a process called crystallization. Sugar crystals form when you create a supersaturated solution of sugar and water — that just means there's more sugar than can be dissolved in the boiling water — and let it cool.

What is the chemical equation for rock candy? ›

Chemical Equation- The chemical equation for rock candy is C12H22O11(aq)--> C12H22O11(s). This is true because sucrose, table sugar, is an aqueous solution of sugar dissolving in water, and is formed into a solid of sugar molecules.

What is the chemical formula for candy? ›

Did you know that most types of candy are made of sugar from two kinds of plants: sugar cane and beets? The common form of sugar is called sucrose (C12H22O11), a molecule made up from glucose and fructose (see front cover).

How does candy making relate to chemical bonding? ›

Because the formation of chemical bonds always releases energy, more sucrose molecules will join the crystal in an attempt to increase the temperature. This explains why crystals form when the temperature decreases. Once the saturated solution starts to cool down, it becomes supersaturated.

What are the 6 stages of candy making? ›

The Cold Water Candy Test
  • Thread Stage. 230° F–235° F. sugar concentration: 80% ...
  • Soft-Ball Stage. 235° F–240° F. sugar concentration: 85% ...
  • Firm-Ball Stage. 245° F–250° F. sugar concentration: 87% ...
  • Hard-Ball Stage. 250° F–265° F. sugar concentration: 92% ...
  • Soft-Crack Stage. 270° F–290° F. ...
  • Hard-Crack Stage. 300° F–310° F.

Is candy melting a chemical change? ›

The melting process is a physical change of state from a solid to a liquid. The chocolate doesn't change chemically and can easily solidify when put to room temperature.

Is candy an acid or base? ›

Sour candies aren't the only types of edibles that register low on the pH scale. Did you know that most food measures a bit more acidic than alkaline? That's why your candies—even the sugary sweet candies and the rich chocolate ones—all should have ended up with a pH number below 7.

Does candy have chemicals? ›

Artificial Colors, Flavors, and Sweeteners. Preservatives – including: sodium benzoate, sulfites (sulfur dioxide), polysorbate 60, 65 or 80, nitrites, TBHQ, and BHT/BHA. Gluten – may be listed as maltodextrin, modified food starch, caramel coloring or flavoring, citric acid, and “natural flavorings”

What is the science behind sweets? ›

Foods that stimulate the reward system in your brain, like sugar and other foods that spike your blood sugar, can lead to cravings. Foods that are hyperpalatable (those that are sweet, salty, creamy and easy to eat) can also trigger hormones that contribute to cravings—such as insulin, dopamine, ghrelin and leptin.

What is the process of making candy? ›

Candy is made by dissolving sugar in water or milk to form a syrup, which is boiled until it reaches the desired concentration or starts to caramelize. The type of candy depends on the ingredients and how long the mixture is boiled. Candy comes in a wide variety of textures, from soft and chewy to hard and brittle.

What is the chemistry of candy making sugar? ›

A supersaturated solution is unstable—it contains more solute (in this case, sugar) than can stay in solution—so as the temperature decreases, the sugar comes out of the solution, forming crystals. The lower the temperature, the more molecules join the sugar crystals, and that is how rock candy is created.

How are candy canes made as a summary? ›

Candy canes come in many different colours and sizes. They're made by melting sugar and then cooling it into long, thin strips. Once the sugar has cooled, it's then wrapped around a metal rod to form the shape of a candy cane.

Top Articles
Latest Posts
Article information

Author: Tuan Roob DDS

Last Updated:

Views: 6478

Rating: 4.1 / 5 (62 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Tuan Roob DDS

Birthday: 1999-11-20

Address: Suite 592 642 Pfannerstill Island, South Keila, LA 74970-3076

Phone: +9617721773649

Job: Marketing Producer

Hobby: Skydiving, Flag Football, Knitting, Running, Lego building, Hunting, Juggling

Introduction: My name is Tuan Roob DDS, I am a friendly, good, energetic, faithful, fantastic, gentle, enchanting person who loves writing and wants to share my knowledge and understanding with you.